346 research outputs found

    Ten years of the horse reference genome: insights into equine biology, domestication and population dynamics in the post-genome era.

    Get PDF
    The horse reference genome from the Thoroughbred mare Twilight has been available for a decade and, together with advances in genomics technologies, has led to unparalleled developments in equine genomics. At the core of this progress is the continuing improvement of the quality, contiguity and completeness of the reference genome, and its functional annotation. Recent achievements include the release of the next version of the reference genome (EquCab3.0) and generation of a reference sequence for the Y chromosome. Horse satellite-free centromeres provide unique models for mammalian centromere research. Despite extremely low genetic diversity of the Y chromosome, it has been possible to trace patrilines of breeds and pedigrees and show that Y variation was lost in the past approximately 2300 years owing to selective breeding. The high-quality reference genome has led to the development of three different SNP arrays and WGSs of almost 2000 modern individual horses. The collection of WGS of hundreds of ancient horses is unique and not available for any other domestic species. These tools and resources have led to global population studies dissecting the natural history of the species and genetic makeup and ancestry of modern breeds. Most importantly, the available tools and resources, together with the discovery of functional elements, are dissecting molecular causes of a growing number of Mendelian and complex traits. The improved understanding of molecular underpinnings of various traits continues to benefit the health and performance of the horse whereas also serving as a model for complex disease across species

    Construction of two whole genome radiation hybrid panels for dromedary (Camelus dromedarius): 5000RAD and 15000RAD

    Get PDF
    The availability of genomic resources including linkage information for camelids has been very limited. Here, we describe the construction of a set of two radiation hybrid (RH) panels (5000RAD and 15000RAD) for the dromedary (Camelus dromedarius) as a permanent genetic resource for camel genome researchers worldwide. For the 5000RAD panel, a total of 245 female camel-hamster radiation hybrid clones were collected, of which 186 were screened with 44 custom designed marker loci distributed throughout camel genome. The overall mean retention frequency (RF) of the final set of 93 hybrids was 47.7%. For the 15000RAD panel, 238 male dromedary-hamster radiation hybrid clones were collected, of which 93 were tested using 44 PCR markers. The final set of 90 clones had a mean RF of 39.9%. This 15000RAD panel is an important high-resolution complement to the main 5000RAD panel and an indispensable tool for resolving complex genomic regions. This valuable genetic resource of dromedary RH panels is expected to be instrumental for constructing a high resolution camel genome map. Construction of the set of RH panels is essential step toward chromosome level reference quality genome assembly that is critical for advancing camelid genomics and the development of custom genomic tools

    CeCoIn5 - a quantum critical superfluid

    Full text link
    We have made the first complete measurements of the London penetration depth λ(T)\lambda(T) of CeCoIn5, a quantum-critical metal where superconductivity arises from a non-Fermi-liquid normal state. Using a novel tunnel diode oscillator designed to avoid spurious contributions to λ(T)\lambda(T), we have established the existence of intrinsic and anomalous power-law behaviour at low temperature. A systematic analysis raises the possibility that the unusual observations are due to an extension of quantum criticality into the superconducting state.Comment: 5 pages, 3 figure

    Effects of precompetition state anxiety interventions on performance time and accuracy among amateur soccer players: Revisiting the matching hypothesis

    Get PDF
    In this study, we tested the matching ypothesis, which contends that administration of a cognitive or somatic anxiety intervention should be matched to a participant's dominant anxiety response. Sixty-one male soccer players (mean age 31.6 years, s=6.3) were assigned to one of four groups based on their responses to the Competitive State Anxiety Inventory-2, which was modified to include a directional scale. Interventions were randomly administered in a counterbalanced order 10 min before each performance trial on a soccer skill test. The dominantly cognitive anxious group (n=17), the dominantly somatic anxious group (n=17), and the non-anxious control intervention group (n=14) completed a baseline performance trial. The second and third trials were completed with random administration of brief cognitive and somatic interventions. The non-anxious control group (n=13) completed three trials with no intervention. A mixed-model, GroupTreatment multivariate analysis of variance indicated significant (P0.05), or performance time or accuracy (P>0.05). The present findings do not provide support for the matching hypothesis for state anxiety intensity and direction, or for performance

    A Gene Catalogue of the Euchromatic Male-Specific Region of the Horse Y Chromosome: Comparison with Human and Other Mammals

    Get PDF
    Studies of the Y chromosome in primates, rodents and carnivores provide compelling evidence that the male specific region of Y (MSY) contains functional genes, many of which have specialized roles in spermatogenesis and male-fertility. Little similarity, however, has been found between the gene content and sequence of MSY in different species. This hinders the discovery of species-specific male fertility genes and limits our understanding about MSY evolution in mammals. Here, a detailed MSY gene catalogue was developed for the horse – an odd-toed ungulate. Using direct cDNA selection from horse testis, and sequence analysis of Y-specific BAC clones, 37 horse MSY genes/transcripts were identified. The genes were mapped to the MSY BAC contig map, characterized for copy number, analyzed for transcriptional profiles by RT-PCR, examined for the presence of ORFs, and compared to other mammalian orthologs. We demonstrate that the horse MSY harbors 20 X-degenerate genes with known orthologs in other eutherian species. The remaining 17 genes are acquired or novel and have so far been identified only in the horse or donkey Y chromosomes. Notably, 3 transcripts were found in the heterochromatic part of the Y. We show that despite substantial differences between the sequence, gene content and organization of horse and other mammalian Y chromosomes, the functions of MSY genes are predominantly related to testis and spermatogenesis. Altogether, 10 multicopy genes with testis-specific expression were identified in the horse MSY, and considered likely candidate genes for stallion fertility. The findings establish an important foundation for the study of Y-linked genetic factors governing fertility in stallions, and improve our knowledge about the evolutionary processes that have shaped Y chromosomes in different mammalian lineages

    Absolute values of the London penetration depth in YBa2Cu3O6+y measured by zero field ESR spectroscopy on Gd doped single crystals

    Full text link
    Zero-field electron spin resonance (ESR) of dilute Gd ions substituted for Y in the cuprate superconductor YBa2_2Cu3_3O6+y_{\rm 6+y} is used as a novel technique for measuring the absolute value of the low temperature magnetic penetration depth λ(T→0)\lambda(T\to 0). The Gd ESR spectrum of samples with ≈1\approx 1% substitution was obtained with a broadband microwave technique that measures power absorption bolometrically from 0.5 GHz to 21 GHz. This ESR spectrum is determined by the crystal field that lifts the level degeneracy of the spin 7/2 Gd3+^{3+} ion and details of this spectrum provide information concerning oxygen ordering in the samples. The magnetic penetration depth is obtained by relating the number of Gd ions exposed to the microwave magnetic field to the frequency-integrated intensity of the observed ESR transitions. This technique has allowed us to determine precise values of λ\lambda for screening currents flowing in the three crystallographic orientations (a^\hat a, b^\hat b and c^\hat c) in samples of Gdx_{\rm x}Y1−x_{\rm 1-x}Ba2_2Cu3_3O6+y_{6+{\rm y}} of three different oxygen contents y=0.993{\rm y}=0.993 (Tc=89T_c = 89 K), y=0.77{\rm y}=0.77 (Tc=75T_c=75 K) and y=0.52{\rm y}=0.52 (Tc=56T_c=56 K). The in-plane values are found to depart substantially from the widely reported relation Tc∝1/λ2T_c\propto 1/\lambda^2.Comment: 14 pages, 12 figures; version to appear in PR

    Long-read RNA Sequencing Improves the Annotation of the Equine Transcriptome

    Get PDF
    A high-quality reference genome assembly, a biobank of diverse equine tissues from the Functional Annotation of the Animal Genome (FAANG) initiative, and incorporation of long-read sequencing technologies, have enabled efforts to build a comprehensive and tissue-specific equine transcriptome. The equine FAANG transcriptome reported here provides up to 45% improvement in transcriptome completeness across tissue types when compared to either RefSeq or Ensembl transcriptomes. This transcriptome also provides major improvements in the identification of alternatively spliced isoforms, novel noncoding genes, and 3’ transcription termination site (TTS) annotations. The equine FAANG transcriptome will empower future functional studies of important equine traits while providing future opportunities to identify allele-specific expression and differentially expressed genes across tissues

    Whole genome analysis reveals aneuploidies in early pregnancy loss in the horse

    Get PDF
    The first 8 weeks of pregnancy is a critical time, with the majority of pregnancy losses occurring during this period. Abnormal chromosome number (aneuploidy) is a common finding in human miscarriage, yet is rarely reported in domestic animals. Equine early pregnancy loss (EPL) has no diagnosis in over 80% of cases. The aim of this study was to characterise aneuploidies associated with equine EPL. Genomic DNA from clinical cases of spontaneous miscarriage (EPLs; 14–65 days of gestation) and healthy control placentae (various gestational ages) were assessed using a high density genotyping array. Aneuploidy was detected in 12/55 EPLs (21.8%), and 0/15 healthy control placentae. Whole genome sequencing (30X) and digital droplet PCR (ddPCR) validated results. The majority of these aneuploidies have never been reported in live born equines, supporting their embryonic/fetal lethality. Aneuploidies were detected in both placental and fetal compartments. Rodents are currently used to study how maternal ageing impacts aneuploidy risk, however the differences in reproductive biology is a limitation of this model. We present the first evidence of aneuploidy in naturally occurring equine EPLs at a similar rate to human miscarriage. We therefore suggest the horse as an alternative to rodent models to study mechanisms resulting in aneuploid pregnancies
    • 

    corecore